(1) oWASP

THE OWASP TOP 10

MAY 20235 OWASP Global Board Chair

WWW.OWasp.org

) oWASP'

INTRODUCTION

This is all about the OWASP Top 10. We'll cover what the original OWASP Top 10 is, and we'll talk
about what it isn't too! We'll touch on and explain a number of the projects the Top 10
spawned and how they differ from the original. We'll take a look at the process OWASP goes

through with the creation of updated Top 10s and why that's important.

© Author. This work is licensed under Creative Commons Attribution 4.0 International 2

GRANT ONGERS

DEF CON Goon TWITTER / Slack / Linkedin
BlackHat Staff (USA, EU)
. @rewtd
BSides Staff (CPT, LND, LAS)
OxCOFFEE (CPT, LND)
E-MAIL

Co-founder & CTO Secure Delivery

grant.ongers@owasp.org

10+ in Dev (MSP, Telecoms, Banking); grant@securedelivery.io

20+ in Ops (EU Agencies, Utilities Providers); &
30+ in Sec (mostly white hat)

© Author. This work is licensed under Creative Commons Attribution 4.0 International | 3

S
SECURE DELIVERY

TAILORED APPLICATION SOFTWARE

We believe that security cannot
and should not exist in parallel to
engineering teams but needs to

be integrated. Only then
organisations will experience the
synergies and economies of scale

in their product lifecycle.

Waters:

Shell 7
w @ R;chargeQ‘

4P HsBe

HM Revenue
& Customs

rbi

reed business
information

OWASP

Community driven:
200+ chapters in 50 countries

https://www.meetup.com/owasp

OWASI>

German Chapter

GOD (German OWASP Day): 30 - 31 May 2023 (https://god.owasp.de/) ®0WASP‘”

GERMAN OWASP DAY 2023

Update (2023-01-26): Der Call for Sponsors fiir den German OWASP Day 2023 ist eroffnet! Alle relevanten Informationen
finden sich in unserer Broschiire.

Update (2023-02-05): Der Call for Presentations ist nun ebenfalls online!
Update (2023-02-14): Der Verkauf der Konferenztickets ist gestartet!

Das German Chapter des Open Web Application Security Project (OWASP) richtet jahrlich ihre nationale OWASP-Konferenz aus.

Wir freuen uns ankiindigen zu diirfen, dass nach einer mehrjéhrigen Pause der German OWASP Day 2023 wieder stattfinden wird! O WA S p
Dieser wird am 30. und 31.05.2023 in der Frankfurt School of Finance and Management in Frankfurt am Main stattfinden.

Am Hauptveranstaltungstag (31.05) finden eine Reihe von von spannenden technischen und nicht-technischen Vortragen im G erman C h a p 1' er

Bereich der Anwendungssicherheit statt. Am Vortag (30.05) werden verschiedene Seminare und eine Abendveranstaltung zum
gemeinsamen Erfahrungsaustausch angeboten.

Der German OWASP Day ist die fiihrende unabhangige und nicht-kommerzielle Konferenz in Deutschland zur Sicherheit von
Anwendungen. Teilnahme ist ein Muss fiir Sicherheitsexperten, Entwickler, IT-Sicherheitsmanager und sonstige IT-Professionals
im Bereich der Anwendungssicherheit.

Der Call for Presentation lauft, fiir weitere Infos siehe CALL FOR PRESENTATION!

Schreibt euch auf die Mailingliste des German Chapters ein, um informiert zu werden, sobald es Neuigkeiten zur Planung gibt.

© Author. This work is licensed under Creative Commons Attribution 4.0 International | 6

) owAsP

WHATIT IS

&) owasP

“The OWASP Top 10 is primarily an

awareness document...”

e s — ANDREW VAN DER STOCK

https://owasp.org/Topl0/A00_202]1_How_to_use_the_OWASP_Top_10_as_a_standard/ © Author. This work is licensed under Creative Commons Attribution 4.0 International | 8

A01:2021-Broken
Access Control

0,

A06:2021-Vulnerable and
Outdated Components

TOP 10 VULNERABILITIES

A02:2021-
Cryptographic Failures

0,

A07:2021-Identification
and Authentication
Failures

da S O F

A03:2021-Injection A04:2021-Insecure

Design

@
O

A09:2021-Security
Logging and Monitoring
Failures

N\Qo

/LN

A08:2021-Software and
Data Integrity Failures

© Author. This work is licensed under Creative Commons Attribution 4.0 International

A05:2021-Security
Misconfiguration

- <
S
Y
A10:2021-Server Side
Request Forgery

A01:2021-BROKEN ACCESS CONTROL

Restrictions on what authenticated users are allowed to do are Prevention:
often not properly enforced. + Deny by default

)) + Centralise your access control mechanisms and re-use them
Attackers can exploit these flaws to access unauthorized
functionality and/or data, such as access other users' accounts,

view sensitive files, modify other users’ data or change access
rights. permission for a type of record

throughout your app
» Enforce access control down to record ownership, not just CRUD

* Log and alert on access control failures
+ Testl

// This should be a strict equals.

if (route.data.roles && route.data.roles.indexOf (currentUser.role)
// role not authorised so redirect to home page
this.router.navigate(['/']);
return false;

}
// Also doesn’t deny by default

return true;

https://owasp.org/Topl0/A01_2021-Broken_Access _Control/ © Author. This work is licensed under Creative Commons Attribution 4.0 International | 10

A02:2021- CRYPTOGRAPHIC FAILURES

Many web applications and APIs do not properly protect sensitive Prevention:

data, such as financial, healthcare, and PII. + Properly hash and salt stored passwords, or federate auth to an
identity provider

Sensitive data may be compromised without extra protection, such + Encrypt sensitive data at rest and in transit and manage cleartext data

as encryption at rest or in transit, and requires special precautions at application level carefully

when exchanged with the browser. « Don't store sensitive data unnecessarily; discard it as soon as
possible

* Never cache, or allow caching, of responses that contain sensitive
data

// An extremely weak, really terrible password hashing function
MessageDigest mc v geDigest.getInstance ("MD5") ;
~d.getBytes());
byte[] di md.digest () ;
String encryptedPas 'd = DatatypeConverter.printHexBinary (digest) .toUpperCase() ;

© Author. This work is licensed under Creative Commons Attribution 4.0 International | 1

https://owasp.org/Topl0/A02_2021-Cryptographic _Failures/

A03:2021-INJECTION

Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, Prevention:
occur when untrusted data is sent to an interpreter as part of a

command or query. » Use parameterised queries or an ORM

The attacker’s hostile data can trick the interpreter into executing » “Allowlist’ server-side validation of input

unintended commands or accessing data without proper . Escape special characters
authorization.
* Use built-ins, don't roll your own

« If you’re only expecting one result, be very surprised if you see more.
Use LIMIT or similar to prevent mass disclosure of records

// SQL Injection
String query = "SELECT * FROM accounts WHERE custID='" + request.getParameter ("id") + "'";

Command Injection
os.system(socket.recv (1024))

https://owasp.org/Topl0/A03_2021-Injection/ © Author. This work is licensed under Creative Commons Attribution 4.0 International | 12

A04:2021- INSECURE DESIGN

Insecure design is a broad category representing different Prevention:

weaknesses, expressed as “missing or ineffective control design.”

A secure design can still have implementation defects leading to
vulnerabilities that may be exploited.

An insecure design cannot be fixed by a perfect implementation
as by definition, needed security controls were never created to
defend against specific attacks.

There isn't really a code example for this. Have a

A i — — ——— ——

https://owasp.org/Topl0/A04_2021-Insecure_Design/

+ Establish and use a library of secure design patterns or paved road
ready to use components

+ Use threat modeling for critical authentication, access control,
business logic, and key flows

» Integrate security language and controls into user stories

» Compile use-cases and misuse-cases for each tier of your application.

Dachshund.

© Author. This work is licensed under Creative Commons Attribution 4.0 International | 13

) owaspP

A05:2021-SECURITY MISCONFIGURATION

Commonly a result of insecure default configurations, incomplete Prevention:

or ad hoc configurations, open cloud storage, misconfigured HTTP

headers, and verbose error messages containing sensitive * Automated, repeatable environment configuration
information.

* Don'’t overcomplicate - your configuration templating doesn’t need to

. . . N be Turing-complete
Operating systems, frameworks, libraries, and applications must

be securely configured, and patched/upgraded promptly. + Peer review and test configurations as well as code

* Remove everything you don’t need to run - components, documents,
sample apps, default accounts

if (env.IsDevelopment()) {
app.UseDeveloperExceptionPage () ;
} else {
// TODO: Remove this
app.UseDeveloperExceptionPage () ;

//app.UseExceptionHandler ("/Error") ;
//app.UseHsts () ;

https://owasp.org/Topl0/A05_2021-Security _Misconfiguration/ © Author. This work is licensed under Creative Commons Attribution 4.0 International | 14

) owaspP

A06:2021- VULN. & OUTDATED COMPONENTS

Components, such as libraries, frameworks, and other software Prevention:

modules, run with the same privileges as the application. If a « Properly hash and salt stored passwords, or federate auth to an

vulnerable component is exploited, such an attack can facilitate identity provider

serious data loss or server takeover. « Encrypt sensitive data at rest and in transit and manage cleartext data
at application level carefully

Appllcatl.oln.s and APls using compqner_ﬂs with known « Don't store sensitive data unnecessarily; discard it as soon as

vulnerabilities may undermine application defenses and enable possible

various attacks and impacts. « Never cache, or allow caching, of responses that contain sensitive

Example 1: HackerNoon data

Example 2: Browserify / Left-Pad (kik)

There isn't really a code example for this. Have another Dachshund.

A i — — ——— ——

© Author. This work is licensed under Creative Commons Attribution 4.0 International | 15

https:/[owasp.org/Topl0/A06_2021-Vulnerable _and_Outdated_Components/

LN @ Visualization of npm depender X =+

& npm.anvaka.com/#/view/2d/browserify

browserify

® bn.js@4.2.0 i hash js@1.1. 7
- o cr,e te~ec&‘L x ® ® ? @ o ®
of nodes # of links rowserity<sign@4.2.1 ® *
® []

148 295 & oo e e e o

. . \\‘Jnhel'its@z.o.d ® ®
maintainers . o WL o ° ® ®

2
r - » = .
)"r { - ";ﬂn-— ® o & ° i (] s » ® y
P w07 ED OV T ® o ° &
> o, WE
" ' Erp Fa'* e ® o o ° = ® -~ .
2] Al ST | A o= °
Qm > A5 S . f R
nw,;i.‘{ ,'""?" Fia ® o © o — i
AGIGE AR : . A
ﬁ.-ﬁ’ L‘-Jp ,}nL. ® ol B\
Ko A, ’ s ol fhie it R
E 3,‘“"3;‘-““";5'7’“5'?’ g ®
MEERTS e o
Ll]
OB S B ¢ g » °
T Al N ¢ 5 ¢
® (]
®
licenses ® bl S ¢
MIT 126
ISC 11 e S
Apache-2.0 5 ® i
BSD-3-Clause 3
Show 3D °

(MIT OR Apache-2. 0) 1

@ e CVE-2022-37623 - CVEreport X =+ v

- = = i B :
&€ > C @ cvereport/CVE-2022-37623 b o* 0w 0@ :

CVE.report Search

CVE-2022-37623

Source: Mitre Source: NIST CVE.ORG Print: PDF .
avsssmmmncuernumsucniny - Certain versions of Browserify-shim from Browserify-shim Project contain the
: following vulnerability:

Prototype pollution vulnerability in function resolveShims in resolve-shims.js in
thlorenz browserify-shim 3.8.715 via the shimPath variable in resolve-shims.js.

CVE-2022-37623 has been assigned by [[[] cve@mitre.org to track the vulnerability - currently rated as [[ELILIE.0 severity.

CVSS3 Score: 9.8 - CRITICAL

Attack Attack Privileges User
Vector ¢ Complexity Required Interaction
[NETWORK Low =3 [NONE
Scope Confidentiality Integrity Availability
Impact Impact Impact

CVE References

Description Tags * Link

) owaspP

A07:2021-ID & AUTHENTICATION FAILURES

Application functions related to authentication and session Prevention:

management are often implemented incorrectly. » Strong passwords & MFA. Use the updated NIST guidance, it's good

now!

This allows attackers to compromise passwords, keys, or session
tokens, or to exploit other implementation flaws to assume other » Block or heavily rate limit repeated authentication attempts
users’ identities temporarily or permanently.

* Expire inactive sessions

* Never implicitly trust

// Very silly session IDs

https://example.com/userApp?sessionId=14633
https://example.com/userApp?sessionlId=14634

// Default credentials
if (userName == 'admin' && password == 'letmein') { }

https://owasp.org/Topl0/A07_2021-Identification_and _Authentication_Failures/ © Author. This work is licensed under Creative Commmons Attribution 4.0 International | 18

) owaspP

A08:2021-SOFT. & DATA INTEGRITY FAILURES

Insecure deserialization often leads to remote code execution. Prevention:

Even if deserialization flaws do not result in remote code « Avoid native serialisation formats, use a pure data format like JSON
execution, they can be used to perform attacks, including replay

attacks, injection attacks, and privilege escalation attacks. » Ifyou have to, consider cryptographically signing and only

deserialising authenticated messages

+ Don't allow the datastream to define the type of object being
deserialised to

» Don'’t write your own deserialiser - use a common, secured, actively
maintained one

import pickle

data = """ data from an untrusted source """
pickle.loads (data)

https://owasp.org/Topl0/A08_2021-Software _and_Data_Integrity_Failures/ © Author. This work is licensed under Creative Commons Attribution 4.0 International | 19

) owaspP

A09:2021 - SEC. LOG- & MONITORING FAILURES

Insufficient logging and monitoring, coupled with missing or Prevention:
ineffective integration with incident response, allows attackers to
attack systems, maintain persistence, pivot to more systems, and
tamper, extract, or destroy data.

* Log all authentication, authorisation and validation failures

» Alert on serious events or combination of events - be aware of Alert

. . . Fatigue
Most breach studies show time to detect a breach is over 200
days, typically det.ect.ed by external parties rather than internal « Ship logs to places where attackers cannot easily access and secure
processes or monitoring. them against erasure

+ Use a smart log management or Security information and event
management (SIEM) tool

// Have an aardvark.
//
//
//
//

//
//
//
//

https://owasp.org/Topl0/A09_2021-Security_Logging_and_Monitoring _Failures/ © Author. This work is licensed under Creative Commons Attribution 4.0 International | 20

) owaspP

A10:2021 - SERVER-SIDE REQUEST FORGERY

SSRF flaws occur whenever a web application is fetching a Prevention:
remote resource without validating the user-supplied URL. « Sanitize and validate all client-supplied input data

o + Enforce the URL schema, port, and destination with a positive allow
It allows an attacker to coerce the application to send a crafted list

request to an unexpected destination, even when protected by a

, . « Do not send raw responses to clients
firewall, VPN, or another type of network access control list (ACL).

. Disable HTTP redirections

+ Be aware of the URL consistency to avoid attacks such as DNS
rebinding and TOCTOU race conditions

POST /product/stock HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 118

stockApi=http://stock.example.net:8080/product/stock/check%3FproductId$3D6%26storeId%3D1

https://owasp.org/Topl0/AI0_2021-Server-Side _Request_Forgery_%28SSRF%29/ © Author. This work is licensed under Creative Commons Attribution 4.0 International | 21

) owAsP

HOWIT IS MADE

FROM 2003 to 2004

A3 Broken Authentication and Session Broken Authentication and Session
Management Management
A4 Cross Site Scripting (XSS) Cross Site Scripting (XSS)
Ab Buffer Overflows Buffer Overflows
45 Commandinjectonflows Injection Flaws (enamesiom 02009
A7 Improper Error Handling Improper Error Handling

A9
A10 Security Misconfiguration (dropped off)

Remote Administration Flaws (dropped off)

Insecure Use of Cryptography (new)

23

FROM 2004 to 2007

2004 2007

Al Unvalidated Input (dropped off) Cross Site Scripting (XSS)

A3 Broken Authentication and Session

Malicious File Execution (new)

Management
A4 Cross Site Scripting (XSS)
AB Buffer Overflows (dropped off) Cross Site Request Forgery (CSRF) (new)
AG Injection Flaws

Broken Authentication and Session
Management

Denial of Service (dropped off)

24

FROM 2007 to 2010

Cross Site Scripting (XSS)
Cross Site Scripting (XSS)
Broken Authentication and Session

A3 Malicious File Execution (dropped off)

Management
A4 Insecure Direct Object Reference Insecure Direct Object Reference
AS Cross Site Request Forgery (CSRF) Cross Site Request Forgery (CSRF)

Information Leakage & Improper Error

AB Handling (dropped off) Security Misconfiguration (returned from A10:2004)
Broken Authentication and Session .

A7 Management Insecure Cryptographic Storage

A8 Insecure Cryptographic Storage Failure to Restrict URL Access

Al0 Failure to Restrict URL Access Unvalidated Redirects and Forwards (new)

FROM 2010 to 2013

Al Injection Injection
A2 Cross Site Scripting (XSS) Broken Authentication and Session
Management

A3 Broken Authentication and Session Cross Site Scripting (XSS)
Management

A4 Insecure Direct Object Reference Insecure Direct Object Reference

AbS Cross Site Request Forgery (CSRF) Security Misconfiguration

AG Security Misconfiguration

Cross Site Request Forgery (CSRF)
Using Known Vulnerable Components (new)
Al10 Unvalidated Redirects and Forwards Unvalidated Redirects and Forwards

26

FROM 2013 to 2017

Injection

Injection

Cross Site Scripting (XSS) Sensitive Data Exposure

XML External Entities (XXE) (new)

A5 Security Misconfiguration

AG Sensitive Data Exposure Security Misconfiguration

A8 Cross Site Request Forgery (CSRF) (dropped off) Insecure Deserialization (new)

A9 Using Known Vulnerable Components Using Known Vulnerable Components

A1O Unvalidated Redirects and Forwards (dropped

off) Insufficient Logging & Monitoring (new)

FROM 2017 to 2021

2017 2021

Al Injection Broken Access Control
A2

A3 Injection

A4 XML External Entities (XXE) (dropped off) Insecure Design (new)
Ab Broken Access Control Security Misconfiguration

AG Security Misconfiguration

A7 Cross-Site Scripting (XSS) (dropped off)

Insecure Deserialization (dropped off) Software and Data Integrity Failures (new)

A9

Server-Side Request Forgery (new)

28

CORE PRINCIPLES

OWASP Top 10 is a baseline, not a ceiling
- Data is good, data isn't everything

« Data is looking in the past, hence the community survey
- Stability is good

« Need to raise the minimum bar

« Drive the right behaviour to improve software security

« Focus on root cause over symptom

DATA ANALYSIS

DETERMINE CATEGORIES
Not just the 30 (or so) CWEs

previously - an open data request
was put out pulling about 400
CWEs

WHAT'S A CWE AGAIN?

Common Weakness Enumeration -
the MITRE published, community-
developed list of software and

hardware weakness types.

IT IS MADE

) owAsP

COMMUNITY

© Author. This work is licensed under Creative Commons Attribution 4.0 International | 30

DATA IS RETROSPECTIVE

Using just data means we can only
see the past - and the Top 10

needs to be more forward focused

OWASP IS THE COMMUNITY
The best, and brightest working in

AppSec are involved

CWE331 Insufficent Entropy

A9:2017 Using Components
with Known Vulnerabilities

A6:2017 Security
Misconfiguration

AB:2017 Insecure
Deserialization

4 /

A1:2017 Injection

A4:2017 XML External

== " Entities (XXE)

A7:2017
Cross-Site
Scripting

DATA OVERLAP 2017 / 2021

A2:2017 Broken
Authentication

A3:2017 Sensitive
Data Exposure

1

<al =

A5:2017 Broken
Access Control

\

A10:2017 Insufficient
Logging & Monitoring

DATA PROVIDERS

R,

Application secur ity (=== - |
MICRO WhiteHat
(5 Cobalt ~ L!rocis

C Contrast |1ackerone
& GitLab ::iProbely) Semest
@ sqreen VERACODE

DATABY CWE

Number of CWEs Reported by Multiple Organizations

>75% of CWEs
contributed were
tested at 3 or
140 fewer orgs

e 85

120

100 @5
80 v D 66
& o\o \,\(b
%A@ & &
40 Q@ @ @)

13 12 10 9 8 7 6 5 K 3 2 1

) owAsP

SURVEY RESULTS

OWASP Top Ten 2021 Survey Results (437 Responses)

Server-Side Request Use of Unmantaned Iinsufficient Loggng Unproteded Storage Unrestricted Upload cestive Att ack clusi Insecure Build and/or Deserialization u' Cromi-Site Request Unvaldated Forward Improper Control of Incorsistendy g IMmproper Restriction
Forgery (SSRF) [OWE Third Par Monitoring [CWE- of Credentisls [OWE- of File with Dangerous)hrhv,rm-. Funconsl |‘!u": Untns Forgery (CSRF)[CWE- and Redireats [CWE- Inter sction Frequency Between 3 within
918] Componen mm/rm) 2 Type CWE434) Untrusted Control Environmert [No 52] 601) (Anti-Atomation) Implementation and
q) phere Brd Party cwe| [CWE-799) DeocumentedDesign
Content) (CWE-829) [CWE-1068) | 34

CVSS SCORING

CVSSv2 vs CVSSv3 Impact

——AVG2IMPACT == AVG 3 IMPACT

SEIMD

66-IM)
28I

170

UFIND

444
060
TEE-IND

B0
BSEIND

8¢
182-IM2
WEIND
BN

V2 -> V3 Impact Delta Weighted

CVSS SCORING

WEIND
00Z-3M0

>FIMI-OAN

1.00

2.00

3.00

36

{(V2V3impactDelta-Weighted)

]
g

—. V2V 3l mip actDe lta-Weig hted

CVSS SCORING

CVSSv2 vs CVSSv3 Exploit

—— AVG2EXPLOIT AVG3EXPLOT

R H‘I-I‘ll‘

WUTINO
& J

UTIN

06-3

EEIND
BESIMD
1630
LS U]

69N

YoM
Ziam

V2 -> V3 Exploit Delta

CVSS SCORING

SEINO
(A%]
e
¥BE-IMND
UEIND
REIN
GBEIND

W

L0
8IN
WEIND

98IMD

SrIMN0

ZSEIND
00Z-3IM0
EIT-3M
M

38

near (V2V

#
>
o
5

(NOT SO) SECRET FORMULA

Category Incidence Coverage Exploit Impact Occurances Score Rank

Vulnerable Components 83.88 31.07 7.5 15.0 3.05 140.49 6
Cryptographic Failures 139.31 47.60 10.9 20.4 23.38 241.64 2
Security Misconfiguration 59.51 53.75 12.2 19.7 20.84 165.97 5
Identification or Authentication Failures 44.52 47.70 11.1 19.5 13.22 136.03 7
Software or Data Integrity Failures 50.00 45.03 10.4 23.8 4.80 134.04 8
Insecure Design 72.57 46.35 9.7 20.3 26.24 175.21 3
Injection 57.27 56.43 10.9 21.5 27.42 173.45 4
Broken Access Control 167.92 56.73 10.4 17.8 31.85 284.67 1
Auditing/Logging Failures 57.68 32.20 10.3 15.0 5.36 120.52 9
SSRF 8.17 40.63 12.4 20.2 0.95 82.35 10
Weight 300 60 155 3 10000

Category Incidence Coverage Exploit Impact Occurances

Vulnerable Components 60% 22% 5% 11% 2%

Cryptographic Failures 58% 20% 5% 8% 10%

Security Misconfiguration 36% 32% 7% 12% 13%

Identification or Authentication Failures 33% 35% 8% 14% 10%

Software or Data Integrity Failures 37% 34% 8% 18% 4%

Insecure Design 41% 26% 6% 12% 15%

Injection 33% 33% 6% 12% 16%

Broken Access Control 59% 20% 4% 6% 11%

Auditing/Logging Failures 48% 27% 9% 12% 4%

SSRF 10% 49% 15% 24% 1% | 39

https://github.com/OWASP/Topl0/tree/master/2021

) owAsP

WHAT IT ISN'T

&) owasP

“.. However, this has not stopped
organisations using it as a de facto
industry AppSec standard since its

- inception in 2003.”

ANDREW VAN DER STOCK

https://owasp.org/Topl0/A00_202]1_How_to_use_the_OWASP_Top_10_as_a_standard/ © Author. This work is licensed under Creative Commons Attribution 4.0 International | 41

&) owasP

“If you want to use the OWASP Top 10 as
a coding or testing standard, know that
it is the bare minimum and just a

- starting point.”

ANDREW VAN DER STOCK

https://owasp.org/Topl0/A00_202]1_How_to_use_the_OWASP_Top_10_as_a_standard/ © Author. This work is licensed under Creative Commons Attribution 4.0 International | 42

&) owasP

“One of the difficulties of using the
OWASP Top 10 as a standard is that we

document appsec risks, and not

necessarlly easuy testable issues.”
. — ANDREW VAN DER STOCK

https://owasp.org/Topl0/A00_202]1_How_to_use_the_OWASP_Top_10_as_a_standard/ © Author. This work is licensed under Creative Commons Attribution 4.0 International | 43

) owAsP

HOW TOUSE IT

&) owaspP

“The ASVS is the only acceptable choice

for tool vendors.”

e s — ANDREW VAN DER STOCK

https://owasp.org/Topl0/A00_202]1_How_to_use_the_OWASP_Top_10_as_a_standard/ © Author. This work is licensed under Creative Commons Attribution 4.0 International | 45

WITH THE ASVS

Application Security Verification Standard

(e e Building, Configuration, Deployment 5 ;
Applicability Building Flh e : Assurance and Verification

5 Standards and Secure & Peer Unit al Penetration

Allapps SsolirelGading checklists Code Review DevSecOps Integ n Tests
Security ;

All apps Archgec_ture and Secure Coding Stzg:z:ﬁsstznd %e:;;eni::;r DevSecOps ih tegUr:Itti:r?iests Hybrid Reviews SAST

eviews

Security ¢

High Assurance Architecture and Secure Coding Stiﬂgzﬂssénd Sce;;;eﬁt\z::‘r DevSecOps In te;;lttioa:iests Hybrid Reviews SAST
Reviews

Accepiab‘e m

ovs

https://owasp.org/www-project-application-security-verification-standard/ https://www.crest-approved.org/membership/crest-ovs-programme

/46

MAPPING TO ASVS

Use Case
Awareness Yes

Ligelipligle! Entry level Comprehensive

Design and architecture Occasionally Yes

Coding standard Bare minimum Yes

Secure code review Bare minimum Yes

Peer review checklist Bare minimum Yes

Unit testing Occasionally Yes

Integration testing Occasionally Yes

Penetration testing Bare minimum Yes

Tool support Bare minimum Yes

Secure supply chain Occasionally Yes

https://owasp.org/Topl0/A00_2021_How_to_use_the_OWASP_Top_10_as_a_standard/ | 47

WITH THE SAMM

Business

Farictior Governance Design Implementation Verification Operations

o
Security E Architecture

- : 10 i
practaces Strategy & Metrics Threat Assessm Secure Build = e = Incident Management

Cr & Measure & Application hred Build Software Architecture Architectu ncident ncident
promote ImMprov 1Sk prot mod process dependencies validatic mitigation letection response
Top Top ToP Top
- - - - Requirements-dri Environment
Policy & Complla Security Requurem Secure Deploym i q 4
Testing Management
Policy & Compliance Software Supplier C trol Misu MISE Configuration Pat &
standards nanagement L 1 ification testing hardening upgate
- - ; : Operational
Education & Guidallili Secure Architect il Defect Management Security Testing P
Management
Training & ganization Architectu Technology Defect Metrics & Scalable Deep Data Legacy
Managen tracking standing MAaNagemers

TOP 10: HOW TO USE IT @ owasP

WHERE TO FROM HERE

USETHETOP 10 REVIEW SSDLC REVIEW PEN TESTS

as designed, ensure that how far from baseline do yours cover more

your devs all understand SAMM are you now? than just the Top 10?

it

REVIEW YOUR TOOLS @ USE OWASP SAMM G USE OWASP ASVS @
how far will they take start down the path of make this the baseline

you, are your vendors SAMM you'll not regret it requirements for devs

doing ASVS?

© Author. This work is licensed under Creative Commmons Attribution 4.0 International | 49

) owAsP

THANK YOU u

FOR YOUR ATTENTION

WEB ADDRESS
https://owasp.org
https://securedelivery.io

TWITTER / SLACK / LINKEDIN
@IEte

E-MAIL

grant.ongers@owasp.org
grant@securedelivery.io

