
THE OWASP TOP 10

MAY 2023

www.owasp.org

GRANT ONGERS
OWASP Global Board Chair

Answering the questions; what it is (and isn’t), how it’s made, and how to actually use it effectively

INTRODUCTION
The OWASP Top 10

This is all about the OWASP Top 10. We’ll cover what the original OWASP Top 10 is, and we’ll talk

about what it isn’t too! We’ll touch on and explain a number of the projects the Top 10

spawned and how they differ from the original. We’ll take a look at the process OWASP goes

through with the creation of updated Top 10s and why that’s important.

© Author. This work is licensed under Creative Commons Attribution 4.0 International 2|

GRANT ONGERS
OWASP Global Chair | Co-Founder Secure Delivery

DEF CON Goon
BlackHat Staff (USA, EU)
BSides Staff (CPT, LND, LAS)
0xC0FFEE (CPT, LND)

Co-founder & CTO Secure Delivery

10+ in Dev (MSP, Telecoms, Banking);
20+ in Ops (EU Agencies, Utilities Providers); &
30+ in Sec (mostly white hat)

TWITTER / Slack / LinkedIn

@rewtd

E-MAIL

grant.ongers@owasp.org

© Author. This work is licensed under Creative Commons Attribution 4.0 International 3|

grant@securedelivery.io

SECURE
DELIVERY

At Secure Delivery, we are experts in

technology and product delivery,

engineering and security, and we

understand what it takes to build

and launch high performing, secure

and scalable digital systems in

highly regulated industries.

4|

We believe that security cannot

and should not exist in parallel to

engineering teams but needs to

be integrated. Only then

organisations will experience the

synergies and economies of scale

in their product lifecycle.

A nonprofit foundation that works to

improve the security of software

through over 150 projects

© Author. This work is licensed under Creative Commons Attribution 4.0 International 5|

Community driven:

200+ chapters in 50 countries

https://www.meetup.com/owasp

OWASP
Open Worldwide Application Security Project

6|

GOD (German OWASP Day): 30 - 31 May 2023 (https://god.owasp.de/)

© Author. This work is licensed under Creative Commons Attribution 4.0 International

WHAT IT IS

OWASP Top 10

“The OWASP Top 10 is primarily an

awareness document…”

ANDREW VAN DER STOCK

© Author. This work is licensed under Creative Commons Attribution 4.0 International 8|https://owasp.org/Top10/A00_2021_How_to_use_the_OWASP_Top_10_as_a_standard/

TOP 10 VULNERABILITIES
TOP 10: WHAT IT IS

© Author. This work is licensed under Creative Commons Attribution 4.0 International 9|

TOP 10: WHAT IT IS

// This should be a strict equals.
if (route.data.roles && route.data.roles.indexOf(currentUser.role) !== -1)

// role not authorised so redirect to home page
this.router.navigate(['/']);
return false;

}
// Also doesn’t deny by default
return true;

© Author. This work is licensed under Creative Commons Attribution 4.0 International 10|

A01:2021-BROKEN ACCESS CONTROL

https://owasp.org/Top10/A01_2021-Broken_Access_Control/

Restrictions on what authenticated users are allowed to do are
often not properly enforced.

Attackers can exploit these flaws to access unauthorized
functionality and/or data, such as access other users' accounts,
view sensitive files, modify other users’ data or change access
rights.

Prevention:

• Deny by default

• Centralise your access control mechanisms and re-use them

throughout your app

• Enforce access control down to record ownership, not just CRUD

permission for a type of record

• Log and alert on access control failures

• Test!

TOP 10: WHAT IT IS

© Author. This work is licensed under Creative Commons Attribution 4.0 International 11|

A02:2021 – CRYPTOGRAPHIC FAILURES

https://owasp.org/Top10/A02_2021-Cryptographic_Failures/

// An extremely weak, really terrible password hashing function
MessageDigest md = MessageDigest.getInstance("MD5");
md.update(password.getBytes());
byte[] digest = md.digest();
String encryptedPassword = DatatypeConverter.printHexBinary(digest).toUpperCase();

Many web applications and APIs do not properly protect sensitive
data, such as financial, healthcare, and PII.

Sensitive data may be compromised without extra protection, such
as encryption at rest or in transit, and requires special precautions
when exchanged with the browser.

Prevention:

• Properly hash and salt stored passwords, or federate auth to an
identity provider

• Encrypt sensitive data at rest and in transit and manage cleartext data
at application level carefully

• Don’t store sensitive data unnecessarily; discard it as soon as
possible

• Never cache, or allow caching, of responses that contain sensitive
data

TOP 10: WHAT IT IS

© Author. This work is licensed under Creative Commons Attribution 4.0 International 12|

A03:2021 – INJECTION

https://owasp.org/Top10/A03_2021-Injection/

Injection flaws, such as SQL, NoSQL, OS, and LDAP injection,
occur when untrusted data is sent to an interpreter as part of a
command or query.

The attacker’s hostile data can trick the interpreter into executing
unintended commands or accessing data without proper
authorization.

// SQL Injection
String query = "SELECT * FROM accounts WHERE custID='" + request.getParameter("id") + "'";

Command Injection
os.system(socket.recv(1024))

Prevention:

• Use parameterised queries or an ORM

• “Allow list” server-side validation of input

• Escape special characters

• Use built-ins, don’t roll your own

• If you’re only expecting one result, be very surprised if you see more.
Use LIMIT or similar to prevent mass disclosure of records

TOP 10: WHAT IT IS

© Author. This work is licensed under Creative Commons Attribution 4.0 International 13|

A04:2021 – INSECURE DESIGN

https://owasp.org/Top10/A04_2021-Insecure_Design/

Insecure design is a broad category representing different
weaknesses, expressed as “missing or ineffective control design.”

A secure design can still have implementation defects leading to
vulnerabilities that may be exploited.

An insecure design cannot be fixed by a perfect implementation
as by definition, needed security controls were never created to
defend against specific attacks.

// There isn't really a code example for this. Have a Dachshund.
// __
// , ," e`--o
// (((| __,'
// \\~----------------' _;/
// (/
// /) ._______________.)
// ((((((
// ``-' ``-'

Prevention:

• Establish and use a library of secure design patterns or paved road
ready to use components

• Use threat modeling for critical authentication, access control,
business logic, and key flows

• Integrate security language and controls into user stories

• Compile use-cases and misuse-cases for each tier of your application.

TOP 10: WHAT IT IS

© Author. This work is licensed under Creative Commons Attribution 4.0 International 14|

A05:2021 – SECURITY MISCONFIGURATION

https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

Commonly a result of insecure default configurations, incomplete
or ad hoc configurations, open cloud storage, misconfigured HTTP
headers, and verbose error messages containing sensitive
information.

Operating systems, frameworks, libraries, and applications must
be securely configured, and patched/upgraded promptly.

if (env.IsDevelopment()) {
app.UseDeveloperExceptionPage();

} else {
// TODO: Remove this
app.UseDeveloperExceptionPage();
//app.UseExceptionHandler("/Error");
//app.UseHsts();

}

Prevention:

• Automated, repeatable environment configuration

• Don’t overcomplicate - your configuration templating doesn’t need to
be Turing-complete

• Peer review and test configurations as well as code

• Remove everything you don’t need to run - components, documents,
sample apps, default accounts

TOP 10: WHAT IT IS

A06:2021 – VULN. & OUTDATED COMPONENTS

© Author. This work is licensed under Creative Commons Attribution 4.0 International 15|https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

Components, such as libraries, frameworks, and other software
modules, run with the same privileges as the application. If a
vulnerable component is exploited, such an attack can facilitate
serious data loss or server takeover.

Applications and APIs using components with known
vulnerabilities may undermine application defenses and enable
various attacks and impacts.
Example 1: HackerNoon
Example 2: Browserify / Left-Pad (kik)

// There isn't really a code example for this. Have another Dachshund.
// __
// , ," e`--o
// (((| __,'
// \\~----------------' _;/
// (/
// /) ._______________.)
// ((((((
// ``-' ``-‘

Prevention:

• Properly hash and salt stored passwords, or federate auth to an
identity provider

• Encrypt sensitive data at rest and in transit and manage cleartext data
at application level carefully

• Don’t store sensitive data unnecessarily; discard it as soon as
possible

• Never cache, or allow caching, of responses that contain sensitive
data

TOP 10: WHAT IT IS

A06:2021 – BROWSERIFY EG.

© Author. This work is licensed under Creative Commons Attribution 4.0 International 16|https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

TOP 10: WHAT IT IS

A06:2021 – BROWSERIFY EG.

© Author. This work is licensed under Creative Commons Attribution 4.0 International 17|

TOP 10: WHAT IT IS

© Author. This work is licensed under Creative Commons Attribution 4.0 International 18|

A07:2021 – ID & AUTHENTICATION FAILURES

https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/

Application functions related to authentication and session
management are often implemented incorrectly.

This allows attackers to compromise passwords, keys, or session
tokens, or to exploit other implementation flaws to assume other
users’ identities temporarily or permanently.

// Very silly session IDs
https://example.com/userApp?sessionId=14632
https://example.com/userApp?sessionId=14633
https://example.com/userApp?sessionId=14634

// Default credentials
if (userName == 'admin' && password == 'letmein') { }

Prevention:

• Strong passwords & MFA. Use the updated NIST guidance, it’s good
now!

• Block or heavily rate limit repeated authentication attempts

• Expire inactive sessions

• Never implicitly trust

TOP 10: WHAT IT IS

© Author. This work is licensed under Creative Commons Attribution 4.0 International 19|

A08:2021 – SOFT. & DATA INTEGRITY FAILURES

https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/

Insecure deserialization often leads to remote code execution.

Even if deserialization flaws do not result in remote code
execution, they can be used to perform attacks, including replay
attacks, injection attacks, and privilege escalation attacks.

import pickle

data = """ data from an untrusted source """
pickle.loads(data)

Prevention:

• Avoid native serialisation formats, use a pure data format like JSON

• If you have to, consider cryptographically signing and only
deserialising authenticated messages

• Don’t allow the datastream to define the type of object being
deserialised to

• Don’t write your own deserialiser - use a common, secured, actively
maintained one

TOP 10: WHAT IT IS

© Author. This work is licensed under Creative Commons Attribution 4.0 International 20|

A09:2021 – SEC. LOG- & MONITORING FAILURES

https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/

Insufficient logging and monitoring, coupled with missing or
ineffective integration with incident response, allows attackers to
attack systems, maintain persistence, pivot to more systems, and
tamper, extract, or destroy data.

Most breach studies show time to detect a breach is over 200
days, typically detected by external parties rather than internal
processes or monitoring.

// Have an aardvark.
//
// _.---._ /\\
// ./' "--`\//
// ./ o \
// /./\)______ __ \
// ./ / /\ \ | \ \ \ \
// / / \ \ | |\ \ \7
// " " " "

Prevention:

• Log all authentication, authorisation and validation failures

• Alert on serious events or combination of events - be aware of Alert
Fatigue

• Ship logs to places where attackers cannot easily access and secure
them against erasure

• Use a smart log management or Security information and event
management (SIEM) tool

TOP 10: WHAT IT IS

© Author. This work is licensed under Creative Commons Attribution 4.0 International 21|

A10:2021 – SERVER-SIDE REQUEST FORGERY

https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/

SSRF flaws occur whenever a web application is fetching a
remote resource without validating the user-supplied URL.

It allows an attacker to coerce the application to send a crafted
request to an unexpected destination, even when protected by a
firewall, VPN, or another type of network access control list (ACL).

POST /product/stock HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 118

stockApi=http://stock.example.net:8080/product/stock/check%3FproductId%3D6%26storeId%3D1

Prevention:

• Sanitize and validate all client-supplied input data

• Enforce the URL schema, port, and destination with a positive allow
list

• Do not send raw responses to clients

• Disable HTTP redirections

• Be aware of the URL consistency to avoid attacks such as DNS
rebinding and TOCTOU race conditions

HOW IT IS MADE

OWASP Top 10

FROM 2003 to 2004
TOP 10: HOW IT IS MADE - BRIEF HISTORY

23|

20042003
Unvalidated Input
(renamed from A1:2003)Unvalidated ParametersA1

Broken Access Control
(renamed from A2:2003)Missing Functional Level Access ControlA2

Broken Authentication and Session
Management

Broken Authentication and Session
ManagementA3

Cross Site Scripting (XSS)Cross Site Scripting (XSS)A4
Buffer OverflowsBuffer OverflowsA5

Injection Flaws (renamed from A6:2003)Command Injection FlawsA6
Improper Error HandlingImproper Error HandlingA7

Insecure Use of Cryptography (renamed from
A8:2003)Web and Application ServerA8

Denial of Service (split from A2:2003)Remote Administration Flaws (dropped off)A9
Insecure Use of Cryptography (new)Security Misconfiguration (dropped off)A10

FROM 2004 to 2007

24|

20072004
Cross Site Scripting (XSS)Unvalidated Input (dropped off)A1

Injection FlawsBroken Access ControlA2

Malicious File Execution (new)
Broken Authentication and Session

ManagementA3

Insecure Direct Object Reference
(split from A2:2004)Cross Site Scripting (XSS)A4

Cross Site Request Forgery (CSRF) (new)Buffer Overflows (dropped off)A5
Information Leakage & Improper Error

Handling (renamed from A7:2004)
Injection FlawsA6

Broken Authentication and Session
ManagementImproper Error HandlingA7

Insecure Cryptographic Storage
(renamed from A8:2004)Insecure Use of CryptographyA8

Insecure Communications
(renamed from A10-2004)Denial of Service (dropped off)A9

Failure to Restrict URL Access

TOP 10: HOW IT IS MADE - BRIEF HISTORY

FROM 2007 to 2010

25|

20102007
Injection (renamed from A2:2007)Cross Site Scripting (XSS)A1

Cross Site Scripting (XSS)Injection FlawsA2
Broken Authentication and Session

ManagementMalicious File Execution (dropped off)A3

Insecure Direct Object ReferenceInsecure Direct Object ReferenceA4
Cross Site Request Forgery (CSRF)Cross Site Request Forgery (CSRF)A5

Security Misconfiguration (returned from A10:2004)
Information Leakage & Improper Error

Handling (dropped off)
A6

Insecure Cryptographic StorageBroken Authentication and Session
ManagementA7

Failure to Restrict URL AccessInsecure Cryptographic StorageA8
Insufficient Transport Layer Protection

(renamed from A9:2007Insecure CommunicationsA9

Unvalidated Redirects and Forwards (new)Failure to Restrict URL AccessA10

TOP 10: HOW IT IS MADE - BRIEF HISTORY

FROM 2010 to 2013

26|

20132010
InjectionInjectionA1

Broken Authentication and Session
ManagementCross Site Scripting (XSS)A2

Cross Site Scripting (XSS)Broken Authentication and Session
ManagementA3

Insecure Direct Object ReferenceInsecure Direct Object ReferenceA4
Security MisconfigurationCross Site Request Forgery (CSRF)A5
Sensitive Data Exposure
(merging A7:2010 and A9:2010)Security MisconfigurationA6

Missing Functional Level Access Control
(renamed from A8:2010)Insecure Cryptographic StorageA7

Cross Site Request Forgery (CSRF)Failure to Restrict URL AccessA8
Using Known Vulnerable Components (new)Insufficient Transport Layer ProtectionA9

Unvalidated Redirects and ForwardsUnvalidated Redirects and ForwardsA10

TOP 10: HOW IT IS MADE - BRIEF HISTORY

FROM 2013 to 2017

27|

20172013
InjectionInjectionA1

Broken Authentication (renamed from A2:2013)
Broken Authentication and Session

ManagementA2

Sensitive Data Exposure Cross Site Scripting (XSS)A3
XML External Entities (XXE) (new)Insecure Direct Object ReferenceA4

Broken Access Control
(merged A4:2013 and A7:2013 / returned A2:2004)Security MisconfigurationA5

Security MisconfigurationSensitive Data Exposure A6
Cross-Site Scripting (XSS)Missing Functional Level Access ControlA7

Insecure Deserialization (new)Cross Site Request Forgery (CSRF) (dropped off)A8
Using Known Vulnerable ComponentsUsing Known Vulnerable ComponentsA9

Insufficient Logging & Monitoring (new)Unvalidated Redirects and Forwards (dropped
off)A10

TOP 10: HOW IT IS MADE - BRIEF HISTORY

FROM 2017 to 2021

28|

20212017
Broken Access ControlInjectionA1

Cryptographic Failure (renamed from A3:2017)Broken AuthenticationA2
InjectionSensitive Data Exposure A3

Insecure Design (new)XML External Entities (XXE) (dropped off)A4
Security MisconfigurationBroken Access ControlA5

Vulnerable & Outdated Components
(renamed from A9:2017)Security MisconfigurationA6

Identification & Authentication Failures
(renamed from A2:2017)Cross-Site Scripting (XSS) (dropped off)A7

Software and Data Integrity Failures (new)Insecure Deserialization (dropped off)A8
Security Logging and Monitoring Failures

(renamed from A10:2017)Using Known Vulnerable ComponentsA9

Server-Side Request Forgery (new)Insufficient Logging & MonitoringA10

TOP 10: HOW IT IS MADE - BRIEF HISTORY

CORE PRINCIPLES

29|

TOP 10: HOW IT IS MADE

• OWASP Top 10 is a baseline, not a ceiling
• Data is good, data isn’t everything
• Data is looking in the past, hence the community survey
• Stability is good
• Need to raise the minimum bar
• Drive the right behaviour to improve software security
• Focus on root cause over symptom

METHODOLOGY

30|

DETERMINE CATEGORIES

Not just the 30 (or so) CWEs

previously - an open data request

was put out pulling about 400

CWEs

DATA IS RETROSPECTIVE

Using just data means we can only

see the past - and the Top 10

needs to be more forward focused

DATA ANALYSIS COMMUNITY

WHAT’S A CWE AGAIN?

Common Weakness Enumeration -

the MITRE published, community-

developed list of software and

hardware weakness types.

OWASP IS THE COMMUNITY

The best, and brightest working in

AppSec are involved

© Author. This work is licensed under Creative Commons Attribution 4.0 International | 30

TOP 10: HOW IT IS MADE

DATA OVERLAP 2017 / 2021

31|

TOP 10: HOW IT IS MADE

IAST
SAS
T

DAS
T

DATA PROVIDERS

32|

TOP 10: HOW IT IS MADE

DATA BY CWE

33|

TOP 10: HOW IT IS MADE

>75% of CWEs
contributed were

tested at 3 or
fewer orgs

SURVEY RESULTS

34|

TOP 10: HOW IT IS MADE

CVSS SCORING

35|

TOP 10: HOW IT IS MADE

CVSS SCORING

36|

TOP 10: HOW IT IS MADE

CVSS SCORING

37|

TOP 10: HOW IT IS MADE

CVSS SCORING

38|

TOP 10: HOW IT IS MADE

(NOT SO) SECRET FORMULA

39|

TOP 10: HOW IT IS MADE

https://github.com/OWASP/Top10/tree/master/2021

WHAT IT ISN’T

OWASP Top 10

“… However, this has not stopped

organisations using it as a de facto

industry AppSec standard since its

inception in 2003.”
ANDREW VAN DER STOCK

© Author. This work is licensed under Creative Commons Attribution 4.0 International 41|https://owasp.org/Top10/A00_2021_How_to_use_the_OWASP_Top_10_as_a_standard/

“If you want to use the OWASP Top 10 as

a coding or testing standard, know that

it is the bare minimum and just a

starting point.”
ANDREW VAN DER STOCK

© Author. This work is licensed under Creative Commons Attribution 4.0 International 42|https://owasp.org/Top10/A00_2021_How_to_use_the_OWASP_Top_10_as_a_standard/

“One of the difficulties of using the

OWASP Top 10 as a standard is that we

document appsec risks, and not

necessarily easily testable issues.”
ANDREW VAN DER STOCK

© Author. This work is licensed under Creative Commons Attribution 4.0 International 43|https://owasp.org/Top10/A00_2021_How_to_use_the_OWASP_Top_10_as_a_standard/

HOW TO USE IT

OWASP Top 10

“The ASVS is the only acceptable choice

for tool vendors.”

ANDREW VAN DER STOCK

© Author. This work is licensed under Creative Commons Attribution 4.0 International 45|https://owasp.org/Top10/A00_2021_How_to_use_the_OWASP_Top_10_as_a_standard/

WITH THE ASVS

46|

AAAAAAAA

TOP 10: HOW TO USE IT

Application Security Verification Standard

https://owasp.org/www-project-application-security-verification-standard/ https://www.crest-approved.org/membership/crest-ovs-programme/

MAPPING TO ASVS

47|

ASVSTop 10Use Case
YesAwareness

ComprehensiveEntry levelTraining
YesOccasionallyDesign and architecture
YesBare minimumCoding standard
YesBare minimumSecure code review
YesBare minimumPeer review checklist
YesOccasionallyUnit testing
YesOccasionallyIntegration testing
YesBare minimumPenetration testing
YesBare minimumTool support
YesOccasionallySecure supply chain

TOP 10: HOW TO USE IT

https://owasp.org/Top10/A00_2021_How_to_use_the_OWASP_Top_10_as_a_standard/

WITH THE SAMM

48|

TOP 10: HOW TO USE IT

USE THE TOP 10

as designed, ensure that

your devs all understand

it

01

REVIEW SSDLC

how far from baseline

SAMM are you now?

02

REVIEW PEN TESTS

do yours cover more

than just the Top 10?

03

USE OWASP ASVS

make this the baseline

requirements for devs

06

USE OWASP SAMM

start down the path of

SAMM you’ll not regret it

05

REVIEW YOUR TOOLS

how far will they take

you, are your vendors

doing ASVS?

04

© Author. This work is licensed under Creative Commons Attribution 4.0 International 49|

TOP 10: HOW TO USE IT

WHERE TO FROM HERE

THANK YOU TWITTER / SLACK / LINKEDIN
@rewtd

E-MAIL
grant.ongers@owasp.org

WEB ADDRESS
https://owasp.org

FOR YOUR ATTENTION

grant@securedelivery.io

https://securedelivery.io

